Finding the Largest Eigenvalues of Large Matrices
نویسنده
چکیده
The Lanczos iteration for finding the largest eigenvalues has been implemented in C++. This implementation has been tested against ARPACK which is created for this purpose, but written in Fortran. The test were with regards to both speed and precision.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملPoisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails
We study large Wigner random matrices in the case when the marginal distributions of matrix entries have heavy tails. We prove that the largest eigenvalues of such matrices have Poisson statistics.
متن کاملSpectral Distributions of Adjacency and Laplacian Matrices of Random Graphs By
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval ...
متن کاملSpectral Distributions of Adjacency and Laplacian Matrices of Random Graphs
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval a...
متن کاملLargest Eigenvalues and Sample Covariance Matrices. Tracy-widom and Painlevé Ii: Computational Aspects and Realization in S-plus with Applications
Distributions of the largest eigenvalues of Wishart covariance matrices corresponding to the large size data matrices are studied in this paper by reviewing the most recent results on this topic. Special attention is paid to the corresponding asymptotic laws – Tracy-Widom distributions, and their realizations in S-Plus. A further look at the practical aspects of the results studied in the paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009